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The expansion of online education into massive open online courses (MOOCs) and equipment have created 

a unique opportunity for delivering immersive learning experiences at scale. However, although the 

inclusivity of the MOOC ecosystem can be commended, many online courses lack key benefits associated 

with traditional classroom environments: immersive, engaging, and team-driven learning opportunities. 

Immersive learning environments (ILEs) address these educational gaps but has not been able to operate at 

the broad scale that MOOCs offer. Importantly, ILEs address opportunities missing from MOOC systems, 

they add unique learning opportunities that would also be missing in a traditional classroom. The inclusion 

of this virtual reality technology is pivotal topic for educational research. This theoretical paper will briefly 

define immersive learning environments and the potential benefits of incorporating immersive learning 

environments into scalable educational systems. We will also consider developers constraints on creating 

these online ecosystem and suggested strategies for overcoming them.  

 

INTRODUCTION 

The broad concept of virtual reality encompasses many 

different interfaces, equipment, and experiences (Hepperle, 

Weiß, Siess, & Wölfel, 2019). From large, fully immersive 

virtual worlds (Davis, Proctor, & Shageer, 2016), to using a 

digital overlay with the real world around the user (Siegle, 

2019), the use of virtual reality has evolved leaps and bounds in 

recent years. This review focuses on a subset of virtual reality—

immersive learning environments (ILEs)—defined as fully and 

visually immersive environments in which a 2D image 

surrounds the user to create or enhance a 3D space.  

Prior research has demonstrated that ILEs offer broad 

applicability across learning domains (e.g., math, chemistry, 

combat training, and safety) along with evidence of learning 

benefits. One critical question, however, is how to implement 

and attain such outcomes at scale. How can developers and 

educators transition these tools from isolated studies and 

interventions to broader and larger audiences? Although the 

topic of using affordable ILEs for teaching has been discussed, 

often left out are the constraints on the development side of the 

ILE software, and how to develop software within these limits 

(Rodriguez, 2016). This review briefly defines ILEs and 

evidence of their utility, and then considers both barriers for 

scaling up ILEs and evidence-based strategies developers can 

utilize for overcoming these barriers. We articulate 

recommendations and design principles for such scale up. 

IMMERSIVE LEARNING ENVIRONMENTS 

A feeling of immersion can be achieved through the use of 

virtual reality (VR) head-mounted displays (HMDs), room-like 

Cave Automatic Virtual Environments (CAVEs) (Nelson & 

Ketelhut, 2007), or by placing a digital overlay of graphics and 

sound over a real-world setting as augmented reality (AR) 

(Siegle, 2019). In mixed reality (MR), virtual interactions are 

integrated with non-virtual, physical components (Frank & 

Kapila, 2017). Importantly, computer simulations in which a 

virtual space is viewed only on a 2D display (i.e., does not 

surround the user) are not considered a fully immersive 

 environment (Korteling, Helsdingen, & Sluimer, 2017). 

Although simulations are valuable learning tools (Cant & 

Cooper, 2017), the immersion and depth provided by ILEs can 

uniquely build upon these benefits (Arango-López, Cerón 

Valdivieso, Collazos, Gutiérrez Vela, & Moreira, 2019). 

Applications and Benefits of ILEs 

ILEs have been studied and applied in a vast array of 

educational and training domains. Diverse usage in K-12 and 

higher education settings (see Cook et al., 2019; Zheng, Xing, 

& Zhu, 2019), such as mobile AR instructional materials for 

mathematics (Chen, 2019), or VR for chemistry simulations 

(O’Malley, Agger, & Anderson, 2015). Several applied fields 

have also implemented ILEs to aid in the teaching or training of 

specific skill sets. For example, the U.S. Marine Corps has 

explored VR to train soldiers for combat scenarios (Strachan, 

2016). Similarly, VR simulators have been used in medical 

training for both emergency response and surgery (Khan et al., 

2019) and for teaching long-term patient care practices to 

nursing staff (Gdanetz et al., 2018). VR has also been used to 

train mining equipment operators (Neustupa, Danel, & Řepka, 

2011) and to provide safety training in construction sites 

(Norris, Spicer, & Byrd, 2019).  

The equipment used to interact with these ILEs varies 

from organization to organization, depending on user needs 

(e.g., ways to interact with the tools) and budget (Ritz & Buss, 

2016). The most common equipment used for ILEs are mobile 

phone technologies that offer AR overlays (Siegle, 2019) and 

HMDs that use headsets or lightweight glasses (Yu, Zhou, 

Wang, & Zhao, 2019). However, more elaborate technology 

also has been developed. CAVE systems are enclosed spaces in 

which the walls, floor, and celling have a virtual world 

projected onto them from the outside, allowing for users to 

experience a full range of movement and vision (Ritz & Buss, 

2016). Walking through a virtual world has also made possible 

via the use of motion platforms similar to treadmills; the newest 
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omnidirectional platforms offer 360 degrees of freedom for user 

movement (Monroy, Lutz, Chalasani, & Smolic, 2018). 

 Immersion is fundamental to the design and 

implementation of ILEs. The feeling of being present in the 

virtual space is hypothesized to enrich the learning experience 

(Gardner & Elliott, 2014), both cognitively (Georgiou & Kyza, 

2018), and motivationally (Chen, 2019). In support of these 

claims, studies have indeed observed increase motivation for 

learners leading to learning gains (Arango-López et al., 2019). 

Gains in motivation due to working in ILEs has also been found 

for those with learning anxieties, with high anxiety learners 

reporting lower levels of anxiety and higher confidence and 

satisfaction when using mobile AR learning systems (e.g., math 

anxiety, Chen, 2019). Remote laboratories can also enable 

students to use (virtual) equipment that would have been 

inaccessible, such as working on analog electronics, thus 

exciting students with new opportunities to learn (Garcia-Zubia 

et al., 2017). Studies have evaluated the impact of ILEs within 

K-12 and higher education (Merchant, Goetz, Cifuentes, 

Keeney-Kennicutt, & Davis, 2014), and ILEs have generally 

been shown to have a positive impact on conceptual learning, 

critical thinking, systems thinking, and knowledge organization 

(Georgiou & Kyza, 2018). 

Using ILEs, students can travel to virtually recreated 

locations such as national monuments, geographical wonders, 

and museums (Gaylord-Opalewski & O’Leary, 2019). The 

nature of ILEs allows learners experience a sense of being at 

the location even when physical travel is not possible (Gardner 

& Elliott, 2014). Similarly, ILEs are able to simulate locations 

that would normally be too hazardous or expensive to replicate; 

ILEs allow exploration of these locations with no actual danger 

to participants (Fuentes, 2018).  

Finally, one relatively recent innovation is the ability to 

connect ILEs to an online network, thus creating opportunities 

for distance learning. Learners around the world can work 

together in a shared virtual environment (Umoren et al., 2107). 

For example, networked team training ILEs can enable 

otherwise isolated learners to acquire and hone skills that can 

only be practiced with others, thus improving team performance 

(Eppich et al., 2015), leadership (Rosenman, Vrablik, Brolliar, 

Chipman, & Fernandez, 2019), and communication 

(Zemliansky, 2012). 

MOOCs, Simulations, and ILEs 

Other recent innovations in online education have sought to 

deliver instructional opportunities to regions and populations 

who cannot readily access traditional courses (Power, & 

Coulson, 2015), and to do so at scale—empowering large 

numbers of learners regardless of distance (e.g., Freericks, 

Cutler, Kruse, & Vieira, 2019; O’Malley et al., 2015). These 

massively open online courses (MOOCs) can include computer 

simulations, which allow learners to visually explore and 

interact with various processes and phenomena (e.g., Song et 

al., 2019).  

As noted above, however, computer simulations lack 

several of the affordances of virtual worlds and ILEs. 

Specifically, there are three critical contrasts between 

computer-based simulations and ILEs. First, ILEs potentially 

offer a much higher level of interactive immersion, which has 

been associated with improved learning outcomes (e.g., 

Arango-López et al., 2019). Second, ILEs typically offer a 

larger virtual environment and opportunities to explore than 

computer-based simulations (Kim, Park, & Baek, 2009). 

Computer simulations tend to be more tightly scripted, only 

advancing once the user performs a specific action. In contrast, 

ILEs are often open-ended, allowing for users to learn via both 

formal and informal approaches (Freitas & Neumann, 2009). 

Finally, computer-based simulations are less able to offer the 

freedom of embodied movement available in ILEs (Gautam, 

Williams, Terry, Robinson, & Newbill, 2018; Monroy et al., 

2018; Ritz & Buss, 2016). ILEs with HMDs, glasses, or other 

motion detection allow learners to physically explore and move 

around in the virtual space. 

One question that emerges is how ILEs could be delivered 

at scale in MOOCs or MOOC-like settings. If ILEs afford 

unique learning opportunities and processes that are not 

replicated by simulations, a worthwhile goal is to explore the 

potential constraints or strategies for doing so. We consider 

these questions in the remainder of the paper. 

ILEs AT SCALE: 

CONSTRAINTS AND RECOMMENDATIONS 

Although scaling up ILEs is increasingly plausible, not all 

aspects of scale up are practical. There are (at least) three key 

constraints for implementing ILEs at scale: affordability, 

technical points of entry, and user knowledge. This section will 

discuss each constraint that developers of ILE software will 

face, suggests ways to overcome the obstacles, and consider 

formats that may be impossible given these limits. 

Affordability  

A traditional college education is expensive, and costs continue 

to rise, which poses a challenge to the over 366 million youth 

who are currently not enrolled. Ma and Lee (2019) have found 

that to maintain the MOOC-inspired mission of realizing the 

untapped potential of unenrolled individuals, the courses must 

remain affordable. In a study surveying over eight hundred 

individuals, the accessibility and cost of the MOOCs was the 

second most valued aspect of the courses.  This aspect came in 

second only behind the perceived usefulness of the courses (Ma 

& Lee, 2019). The use of virtual reality equipment and the 

creation of ILEs have been praised in applied fields for reducing 

training costs (Fung et al., 2015). However, this praise emerges 

from a perspective of reducing high costs rather than 

maintaining low costs. For example, in the field of medicine, a 

VR headset costing less than $1,500 USD is considered low 

cost (Bing et al., 2019). Virtual reality equipment can be 

expensive, and these costs are a non-negligible constraint for 

deploying ILEs in MOOCs for the general population.  

One recommendation is for developers to focus on the 

tools already available to many users: smartphones and tablets. 

Using such mobile devices, AR has already reached hundreds 

of millions of users through free or low-cost applications 

available for download (Kim, Kim, & Song, 2019). Some 

applications can be used as-is for AR experiences (i.e., 

overlaying the real world), or can be combined with low-cost, 

light-weight HMDs in which a smartphone is placed inside a 

second device to provide the user with a VR headset experience 
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(Qiu, Qin, Gao, & Shen, 2019). These HMDs that are available 

for purchase for less than eight US dollars and have been found 

to be a suitable way of incorporating the ILEs for a low-income 

population (Vishwanath, Kam, & Kumar, 2017).  Applied 

research has further tested these low-cost HMDs and have 

found that using mobile technology from 2013 (Samsung 

Galaxy Note 3) was practical for creating a realistic VR 

simulation for engineering and construction design (Hilfert & 

König, 2016). Leveraging extant mobile technologies and 

familiar tools already used by learners will be critical for scaling 

up ILEs (Thomson, 2018).  

Technical Points of Entry 

The cost constraint intersects and conflicts with constraints of 

technological sophistication. Technologies for delivering ILEs 

might be physically robust and able to operate the required 

software and controls (Thomson, 2018). Fortunately, evidence 

suggests that many mobile technologies are feasible for basic 

AR and VR purposes (e.g., Qiu et al., 2019). There is no current 

universal standard for tablet or smartphone design, resulting in 

a range of features, interfaces, operating systems, and networks. 

Thus, the developers must design the ILEs software for 

mid-to-low range variations of these devices; designing for the 

lowest range of functionality maximizes inclusion (Encalada & 

Castillo Sequera, 2017). Similarly, ILE software must be 

designed for compatibility across operating systems (Thomson, 

2018). Designing within a single system (e.g., iOS or Android, 

but not both) unfairly and significantly restricts the population 

of potential users. These technical constraints can result in less 

visually impressive ILEs but managing technical requirements 

to maximize accessibility is essential for scale up and for 

leveraging the resources that learners have at their disposal 

(Encalada & Castillo Sequera, 2017).  

User Knowledge 

Chen and colleges (2019) have found that adhering to strong 

user-centered design practices is crucial for successful MOOC 

programs. In addition to users’ financial and technological 

resources, we must also consider their range of technical 

background knowledge and experience. Given a target 

demographic of thousands, millions, or hundreds of millions of 

learners, it is unreasonable to expect high or moderate technical 

prowess. ILE design must consider learners’ abilities just as 

with any product (Chen, Gao, Yuan, & Tang, 2019). 

An obvious but powerful constraint is the likelihood that 

learners will be unfamiliar with VR or AR interfaces. Thus, in 

addition to learning new conceptual content, ILEs represent a 

novel technology that must also be mastered (Verdi & Kulhavy, 

2002). As above, using familiar devices somewhat mitigates 

this learning curve, but the novelty or unfamiliarity of AR/VR 

experiences remains. ILE software and devices must be 

developed with users that have no technical experience in mind.  

Developers should provide meaningful tutorials and 

online support for navigating the new experiences of AR or VR. 

Jacobs and colleges (2016) have shown that if done well, virtual 

instruction tutorials can promote learning and engagement in 

virtually based lessons. Years of research have produced a short 

list of recommendations; that users learn best from of short and 

relevant tutorials, that are audibly and visibly salient, and use 

familiar and relaxed narration. Additionally, the tutorials should 

be created in a format that supports user analytics, with yearly 

evaluations of what revisions can be made to improve the next 

version of the tutorials (Jacobs, Dalal, & Dawson, 2016).  

Impractical or Impossible? 

The above constraints (affordability, technical resources, and 

knowledge) are not insurmountable in many cases, but there are 

approaches that significantly violate these limits. Specifically, 

advanced virtual spaces using CAVE technology or motion 

platforms—although useful and effective in promoting learning 

in immersive environments—seem impossible to scale at this 

time (e.g., Ritz & Buss, 2016). Notably, much of the research 

regarding ILEs has been conducted using these higher end 

technologies (Gdanetz et al., 2018). Although several studies 

have explored ILEs on mobile devices (e.g., Frank & Kapila, 

2017), this research gap calls for further work on scalable and 

low-end version of ILEs. One question is whether the 

diminished quality of these versions might reduce the 

previously observed benefits for learning (e.g., Bing et al., 

2019).  

Developers must avoid technology that is implausible to 

scale in ILEs. CAVE and motion technology are not widely 

accessible, instead developers must focus must be on feasible 

options such as AR technology. Successful implementation of 

AR has been demonstrated when using the technology to 

elaborate existing lessons, such as displaying pictures, graphs, 

and video clips to enhance the course and increase motivation 

and participation (Chen, 2019). Emulating this success of 

building off an existing lesson plan, rather than building from 

the ground up with VR in mind, is likely the first place to start 

this approach (Thomson, 2018). 

DISCUSSION 

The process of implementing ILE into the scale of a MOOC 

system is not without its challenges. As discussed in this paper, 

many of these challenges will fall onto the shoulders of the 

software developers. Recommended considerations include  

• Focus development on devices already owned by the 

majority of the user base, smartphones and tablets 

• Design the ILE software to run on mid-to low 

variations of smartphones and tablets 

• Accompany the creation of ILE software with 

meaningful and continuously evaluated tutorials 

• Avoid technology that is impractical to scale up, 

CAVEs and motion platforms 

Additionally, after developers are able to accomplish all of 

this, there would be testing needed to ensure that the ILEs 

created have not changed or diminished too greatly from those 

in research that have shown such promising learning benefits.  

Future Research 

As the current unknown is whether or not such a scaled back 

form of ILEs would work in the scaled-up MOOC setting, 

research should first be conducted with these low-end mobile 

options. The replication of studies that used state of the art 

materials and equipment must be done with the more scalable 

mobile options discussed in this paper, testing variables such 

as: the level of immersion (Arango-López et al., 2019), 
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reduction in anxiety for learning (Chen, 2019), personal growth 

in conceptual learning abilities (Georgiou & Kyza, 2018), and 

improved team dynamics (Eppich et al., 2015). Without 

knowing that these benefits would still be possible utilizing less 

powerful means of producing ILEs for learning, the entire 

operation of moving ILEs to scale could be fruitless. If it is 

found that ILEs done on this level of scale still hold the same 

benefits, then there should be haste given to starting research 

into the development of the software expressed above, that 

would allow integration of such a ILE into the MOOCs system.  

However, if such findings are not observed—if the 

benefits do not translate when replicated by such lower, scaled-

up means—this does not equivalate to saying that ILEs have no 

place in the future of MOOC systems. Instead this merely 

means that it could not be practical given the current state of 

technology. Should this unfortunately be the case, it remains 

imperative that those involved with the study of education and 

MOOCs instead find where this line is in the technological 

sand, of what is required to create a worthy ILE, and when the 

mass public’s equipment catches up with this required level, the 

iron will be hot to strike for the creation of these scaled ILEs. 
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